

Α

PROJECT REPORT

ON

"Reduce the number of particles that exceed 5 mm in the crushed coal "

UNDERTAKEN AT

Tata Steel Ltd , Kalinganagar

IN PARTIAL FULFILMENT OF

"PGDM-Operation Management"

MIT SCHOOL OF DISTANCE EDUCATION, PUNE.

GUIDED BY

"Mr. Subhakanta Sarangi" (Head Coal & Coke Operation,Tata Steel Ltd)

SUBMITTED BY

"Soumya Ranjan Pradhan"

STUDENT REGISTRATION NO.: MIT2022C00272

MIT SCHOOL OF DISTANCE EDUCATION PUNE - 411 038

YEAR 2022-24

www.mitsde.com

Soumya Ranjan Pradhan Tata Steel Ltd. Kalinganagar

Dear Mr Pradhan,

I am writing to express my sincere appreciation for your hard work and dedication to Tata steel ltd. Your contributions have been invaluable to our team, and I am grateful for all that you do.

Specifically, I want to recognize your outstanding work on

"Reduce the number of particles that exceed 5mm in the crushed coal".

Your leadership and attention to detail have been instrumental in achieving our goals and exceeding our customers' expectations.

Your contributions have not gone unnoticed, and I want to publicly acknowledge your efforts.

I encourage you to keep up the excellent work, and we will continue to support your growth and development within the company.

Once again, thank you for all that you do. You are a valued member of our team, and we appreciate your hard work and dedication.

Head - Operations (Coal, Coke Appl Coal & Coke Operation Tata Steel Ltd.

TATA STEEL KALINGANAGAR

Jajpur 755026 India Registered Office Bombay House 24 Homi Mody Street Fort Mumbai 400 001 Tel 91 22 66658282 Fax 91 22 66657724 Corporate Identity Number L27100MH1907PLC000260 Website www.tatasteel.com

DECLARATION

I hereby declare that this project report entitled "Reduce the number of particles that exceed 5 mm in the crushed coal "bonafide record of the project work carried out by me during the academic year **2022-2024**, in fulfillment of the requirements for the award of "PGDM-Operation Management" of MIT School of Distance Education.

This work has not been undertaken or submitted elsewhere in connection with any other academic course.

Sign:- Journya Ranjan Pradhan Name:- Soumya Ranjan Pradhan

Student ID: MIT2022C00272

ACKNOWLEDGEMENT

I would like to take this opportunity to express my sincere thanks and gratitude to "Mr. Subhakanta Sarangi", Head Coal & Coke Operation, Tata Steel Ltd, for allowing me to do my project work in your esteemed organization. It has been a great learning and enjoyable experience.

I would like to express my deep sense of gratitude and profound thanks to all Tata Steel Ltd. Kalinganagar staff members of for their kind support and cooperation which helped me in gaining lots of knowledge and

experience to do my project work successfully.

At last but not least, I am thankful to my Family and Friends for their moral

support, endurance and encouragement during the course of the project.

Sign: Soumya Ranjan Pradhan Name:- Soumya Ranjan Pradhan

Name:- Soumya Ranjan

Student ID: MIT2022C00272

ABSTRACT

To make steel in a blast furnace, coal must first be turned into coke. Coke has a dual role in the steelmaking process. First, it provides the heat needed to melt the ore, and second, when it is burnt, it has the effect of 'stealing' the oxygen from the iron ore, leaving only the pure iron behind. In the coking plant, coal is heated in the absence of oxygen to 1250c. This removes any impurities in the coal, resulting in coke, which is a porous substance that is nearly all carbon.

Coking coals are the coals which when heated in the absence of air, first melt, go in the plastic state, swell and resolidify to produce a solid coherent mass called coke. When coking coal is heated in absence of air, a series of physical and chemical changes take place with the evolution of gases and vapours, and the solid residue left behind is called coke.

Conventional cokemaking is done in a coke oven battery of ovens sandwiched between heating walls. They are carbonised at a temperature around 1000o-1100o C upto a certain degree of devolatization to produce metallurgical coke of desired mechanical and thermochemical properties. In coke plant Tata steel kalinganagar around 6000 tons of coal is raised in coal tower after being blended, crushed in 2 stages and moisture being added This eventually will generate a coal cake to be charged in battery Moreover, if there is deviation in grain size distribution of coal, the bulk density of the coal cake will be impacted Greater crushing fineness is related to higher number of particle particle contact points which positively influences cake strength but will decrease bulk density of prepared coal cake

This if not optimized will cause deviation in coke properties and hence impact

iron formation in BF Moreover, these parameters have secondary effects on coal fluidity and on

the degree of pressure exerted to the chamber walls Optimization of crushing fineness and

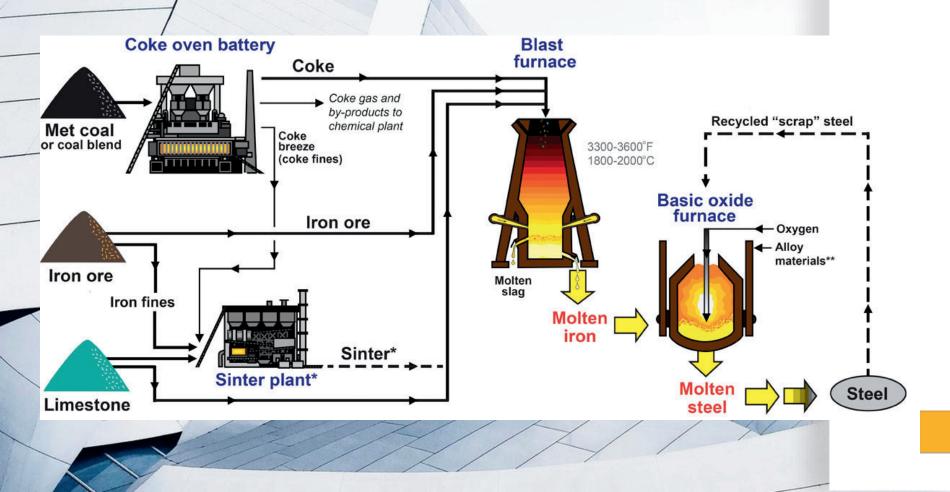
properties affecting it will maintain the coke properties Continuing to operate with varied

crushing fineness (will result in operational risk of battery

This Project was completed with DMAIC method & approach to Continuous Improvement.

The DMAIC methodology consists of five phases, namely, Define, Measure, Analyze, Improve, and Control.

Soumy Ranjan Pradhan


Date:-5th January 2024

Reduce the number of particles that exceed 5 mm in the crushed coal

Soumya Ranjan Pradhan

Mechanical Engineer,Coke PLant,Tata Steel Ltd Kalinganagar

ΤΛΤΛ

ΤΛΤΛ-

DEFINE

Slide -3-13

TATA STEEL

Project charter, SIPOC Diagram, Literature Survey

66

MEASURE

Slide –14-28

CTQ Drill down, Parameter Analysis: Data Breakdown, Data Dictionary, Data Distribution

2

ANALYZE

Slide –29-38

Correlation Matrix, Data Visualization : Univariate Analysis, Bivariate Analysis, Multivariate analysis

CONCLUSION

Slide -39-41

1. DEFINE Project Charter • SIPOC Diagram

TATA

Project Charter

TATA

Business Case

In coke plant around 6000 tons of coal is raised in coal tower after being blended, crushed in 2 stages and moisture being added. This eventually will generate a coal cake to be charged in battery. Moreover, if there is deviation in grain size distribution of coal, the bulk density of the coal cake will be impacted. Greater crushing fineness is related to higher number of particle-particle contact points which positively influences cake strength but will decrease bulk density of prepared coal cake. This if not optimized will cause deviation in coke properties and hence impact iron formation in BF. Moreover, these parameters have secondary effects on coal fluidity and on the degree of pressure exerted to the chamber walls. Optimization of crushing fineness and properties affecting it will maintain the coke properties. Continuing to operate with varied crushing fineness (lesser) will result in operational risk of battery.

Problem Statement

The current mean of greater than 5 mm particle size of crushed coal emerging after two stage crushing (Primary & Secondary) is 2.99% with a standard deviation of 0.392 which if increased could affect coal cake formation its bulk density with deteriorated coke properties.

<u>Goal</u>

To identify coal carbonization and equipment running factors responsible for deviation in mean and standard deviation of greater than 5 mm coal crushed particle by optimizing the identified parameters through correlation techniques.

DMAIC Stage : Analyze Process Impacted : Battery operation Client Impacted : Battery Operation, Coal Cake Charging in Big Y Impacted battery : Coke production

			Ju	lly	202	23				Α	ug	2023	3			9	Sep	t 2	023			0	ct 2	2023	
		W k 1	W k 2	W k 3	/ \ k 4	W k 1	W k 2	W k 3	/ V k 4	V k 1	W k 2	W k k 3	W K k 4	W k k 1	W k 2	k 3	W 4	W	W	W	-				
DEFINE	Plan																								_
	Actual																								
MEASURE	Plan																					Г			
	Actual																								
ANALYZE	Plan							1																	
	Actual																								٠
IMPROVE	Plan				_											T									
	Actual																								
CONTROL	Plan																								
	Actual																								

TATA STEEL

ΤΛΤΛ-

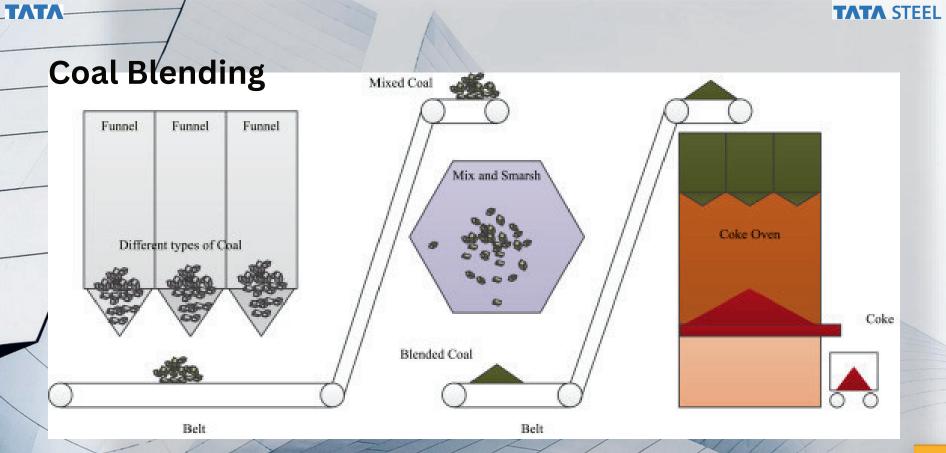
SIPOC Diagram

BUSINESS MODEL

Key Supplier 🧩	Key Inputs 📀	Process 📁	Output 🥎	Customer 💄
Raw Material	• Coal –	Coke plant Operation:	• Wet Coal into	 Battery Operation
Management Division,	• Battery	• Carbonization –	coal Tower	
Utilities, Suppliers	Moisture	Formation of Coke		
	· · · · · · · · ·		0	
	In scope 🧊		Out of scope	
	Coal Blending, Crushingin Primary and		Carbonization in battery,Scrubbers,	
	Secondary Crushers		NH3 Stripping and de-	
			acidifier, PGC, ETP, Naphthalene recovery,	
			Tar Recovery	
Deliverables				۵.
Crushed coal qualitypara	ameter:			

•Greater than 5 mm particle size of crushed coal

TATA STEEL



Process Flowsheet

8

Impact Hammer Mill

TATA

Research Paper findings

_earning from research papers

ΤΛΤΛ

ΤΛΤΛ

Insights from research papers

Paper -1 Effects and impacts of components of coal handling system on coke quality and yield of coke plants [1]

Learning -

- Durithas a significant hardness, because it is quite compact. It is ten times as hard as vitrit.
- The grain size distribution of the coal

M1ix0tu re has a direct influence on the and M40 value of the coke.

Paper -2 Mechanical compaction of coking coals for carbonization in stampcharging coke oven batteries [2]

Learning -

- Increase in crushing fineness reduces the coal cake density while mechanical strength is improved
- Greater crushing fineness is related

to

higher number of particle-particle contact points which positively influences cake strength

Steinbach, R. Neuwirth, R. Kim, ThyssenKrupp Industrial Solutions AG (TKIS), Germany, "Effects and impacts of components of coal handling system on coke quality and yield of coke plants." (2015).

Wasielewski, Ryszard&Rejdak, Michał. (2015). Mechanical compaction of coking coals for carbonization in stamp-charging coke oven batteries. Fizykochemiczne Problemy Mineral urgii-Physicochemical Problems of Mineral Processing. 51.151-161.

Insights from research papers

Paper -2 Mechanical compaction of coking coals for carbonization in stampcharging coke oven batteries [2]

Learning -

- Increase in crushing fineness reduces the coal cake density while mechanical strength is improved
- Greater crushing fineness is related

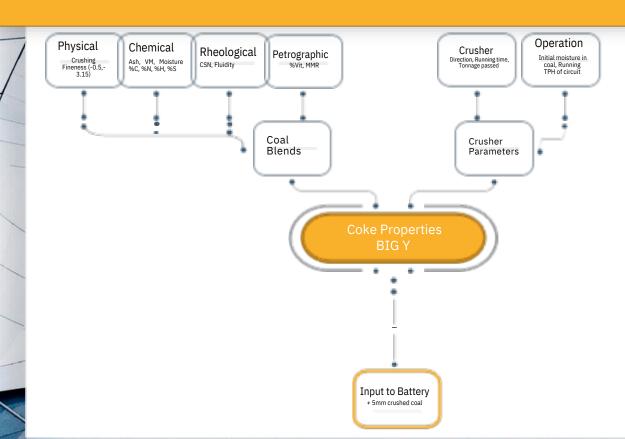
to

higher number of particle-particle contact points which positively influences cake strength

Steinbach, R. Neuwirth, R. Kim, ThyssenKrupp Industrial Solutions AG (TKIS), Germany, "Effects and impacts of components of coal handling system on coke quality and yield of coke plants." (2015). Wasielewski, Ryszard&Rejdak, Michat. (2015). Mechanical compaction of coking coals for carbonization instamp-charging coke oven batteries. FizykochemiczneProblemyMineralurgii-PhysicochemicalProblemsofMineralProcessing. 51.151-161. 20. 5277/ ppm p150114.

2. MEASURE – For Crushing Fineness

- Exploratory Data Analysis
- Data Distribution


ΤΛΤΛ

- CTQ drilldown
- Parameter Analysis
- Data Dictionary

CTQ Drill Down

PARAMETER ANALYSIS : Categorization of data

Coal Blending

•Physical properties -Crushing fineness •Chemical properties-Proximate, Ultimate Analysis •Petrographic Properties-MMR, Vit% •Rheological Properties –CSN

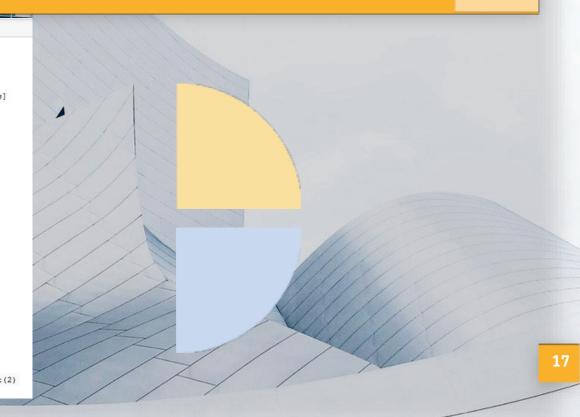
Frequency-CSI lab data –shiftwise (3 times a day)

Crusher Parameter

- •Running time
- •Direction of running •Tonnage passed through each crusher •Crusher combination running

Frequency-CSI lab data -shiftwise (3 times a day)

ΤΛΤΛ


TATA STEEL

PARAMETER ANALYSIS : Categorization of data

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 276 entries, 0 to 275 Data columns (total 28 columns):

#	Column	Non-Null Count	Dtype
		Non-Null Count	
	Date	276 non-null	datetime64[ns]
1	Type of Blend	276 non-null	object
2	VM	261 non-null	float64
3	Moisture	263 non-null 261 non-null	float64
4	Ash	261 non-null	float64
5		276 non-null	
6	C	276 non-null	float64
7	N	276 non-null	float64
8	н	276 non-null	
9	CSN	273 non-null	float64
10	Contraction		
11	Expansion	276 non-null	int64
12	Max. Fluidity	276 non-null	int64
13	Max. Fluidity Vit%	276 non-null	float64
14	MMR	276 non-null	float64
15	-0.5	251 non-null	float64
16	-3.15	251 non-null	float64
17	-3.15 TPH CC 11	276 non-null	int64
18	Initial Moisture	273 non-null	object
19	Primary Crusher	276 non-null	int64
20	Running Time (Min)	276 non-null	int64
21	Direction	276 non-null	int64
22	Coal raised	269 non-null	float64
23	Secondary Crusher	276 non-null	int64
24	Running Time (Min).1	276 non-null	int64
25	Direction .1	275 non-null	float64
26	Coal raised.1	269 non-null	float64
27	Crushing Fineness	253 non-null	float64
dtyp	es: datetime64[ns](1),		
memo	ry usage: 60.5+ KB		

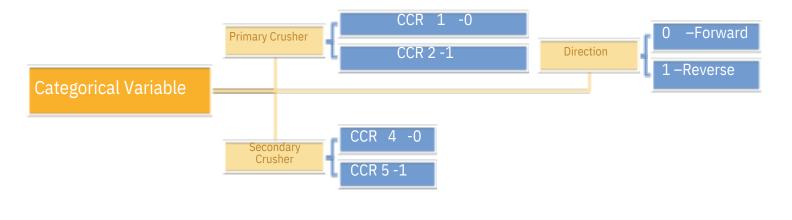
Data set

66

ΤΛΤΛ

The first screenshot shows the total number of columns (Features) and rows (data points) in the data set to be 28 and 276

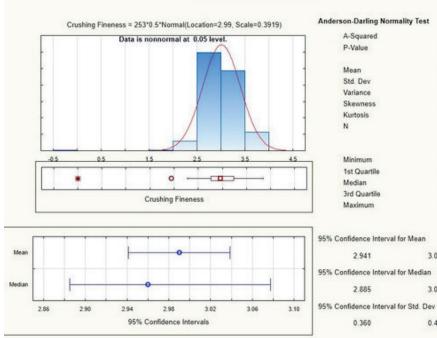
•The second screenshot shows the first five data sample of few input parameter


	Date	Type of Blend	VM	Moisture	Ash	s	с	N	н	CSN	 Initial Moisture	Primary Crusher	Running Time (Min)	Direction	Coal raised	Secondary Crusher	Running Time (Min).1
0	2020- 06-01	A	25.42	10.70	15.43	0.538944	76.205019	1.554112	4.428799	6.0	 9.18	0	400	0	2400.0	0	400
1	2020- 06-01	А	25.88	11.60	15.33	0.538944	76.205019	1.554112	4.428799	6.0	 9.8	0	264	1	1700.7	1	267
2	2020- 06-01	A	25.00	12.43	13.32	0.538944	76.205019	1.554112	4.428799	6.0	 9.49	0	104	1	675.0	1	104
3	2020- 06-02	А	27.28	12.00	13.85	0.538944	76.205019	1.554112	4.428799	6.0	 0	0	0	1	0.0	0	0
4	2020- 06-02	A	26.32	11.94	13.36	0.538944	76.205019	1.554112	4.428799	6.0	 9.66	0	390	0	2530.0	0	390

	/				Description		TATA S
/					Detail	Sample	Unit
Par	rameters	Coal Blend Parameter	1	VM	This parameter shows the volatile matter percentage in coal bler	nd 24,56	%
/			2	Ash	This parameter shows the ash percentage in coal blend	15.4	%
			3	Moisture	This parameter shows the moisture content in coal	10.7	%
			4	S, C, N, H	blend This parameter shows the percentage of individual component of specified elements	0.54, 76.21,1.55, 4.43	%
			5	Contraction	This parameter shows the percentage of contraction undergone by the coal cake	-17	%
			6	Expansion	This parameter shows the percentage of expansion undergone by the coal cake This parameter shows the max fluidity exhibited by the coal	31	%
7 -			7	Max Fluidity	cake This parameter shows the vitrinite content in coal blend	365	Dial Division per Min
			8	Vit%	This parameter shows the mean max reflectance of coal blend	54.17	%
			9	MMR	This parameter shows the total running time of each crusher	1.12	NA
$\langle \rangle =$			1	Running Time	This parameter shows the direction of rotation of crusher	143	Min
		Crusher Parameter	2 3	Direction Coal Raised	This parameter shows the tonnage of coal passed through crushe	F	NA
			5	Coal Naiseu		2537	Ton
							S

Data Dictionary

19



* CCR -Coal Crusher

Categorization of Discrete Variables – Label Encoding

Data Distribution of Crushing Fineness: + 5mm particle size of crushed coal

TATA-

95% Confidence Intervals

Fig-1

1.239

0.003

2.990

0.392

0.154

-1.666

12.248

253

0.000

2,760

2.960

3.240

3.849

3.038

3.077

0.429

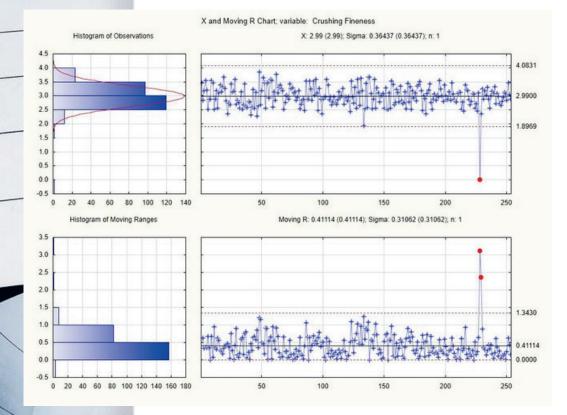
Description statistics of raw data of + 5mm particle size Box and Whisker Plot of + 5mm particle size wrt to blends

Figure-1

Data Distribution of Crushing Fineness: + 5mm particle size of crushed coal

Box Plot of Crushing Fineness grouped by Type of Blend Spreadsheet6 28v*276c 4.0 3.5 -3.0 0 2.5 0 **Crushing Fine** 2.0 1.5 1.0 0.5 0.0 D Median 25%-75% Non-Outlier Range -0.5 G н OY A C D . Y Type of Blend

The histogram shows distribution of + 5mm particle sizemean of 2.99 % and SD of 0.392


Blend –wise distribution of + 5mm particle size

ΤΛΤΛ

ΤΛΤΛ-

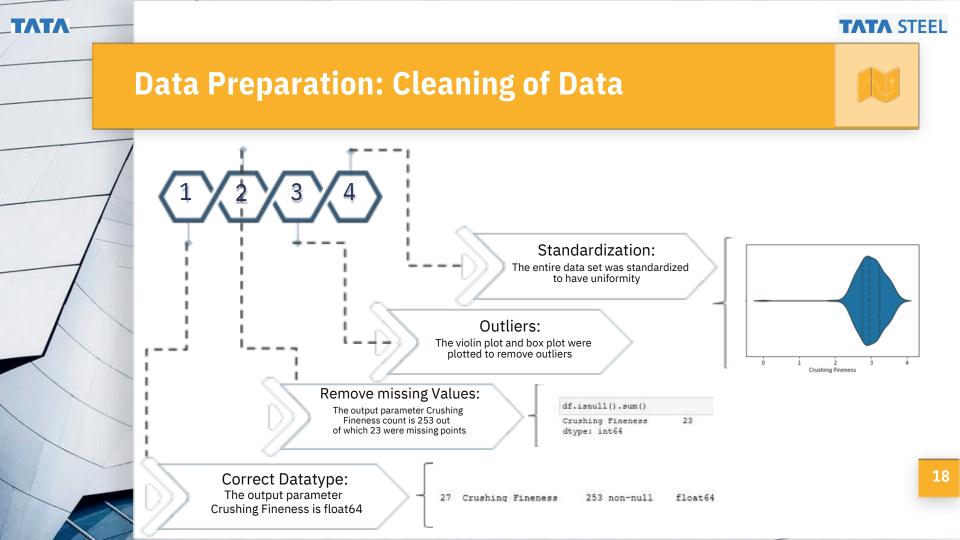
TATA STEEL Data Preparation : Refining Percentage of greater than 5mm particle size Data set

Date points	253
Time period	01/06/2020 -31/08/2020
Mean	2.99 %
Standard Deviation	0.392
Defect Detection	 Beyond UCL and LCL Process Parameter – Above 5mm particle size
Outliers	Greater than 6 mm particle size

Table -1

Fig-3 Control Chart of raw data of + 5mm particle *Table-1* Specification of Data set

Figure-3


Data Preparation : Refining Percentage of greater than 5mm particle size Data set

		/
 	1	1 1
/		
_		
-		

Date points	253
Time period	01/06/2020 -31/08/2020
Mean	2.99 %
Standard Deviation	0.392
Defect Detection	 Beyond UCL and LCL Process Parameter – Above 5mm particle size
Outliers	Greater than 6 mm particle size

Table -1

Table-1 Specification of Data set

TATA-

de infall

	ss 'pandas.core.frame.		
	eIndex: 276 entries, 0		
Data	columns (total 28 col	umns):	and the second second
+	Column	Non-Null Count	Dtype
	Column Date Type of Blend	0.7.6	
0	Date	276 non-null	datetime64[ns
1 2	Type of Blend	2/6 non-null	object
3	Type of Blend VM Moisture Ash S C	261 non-null	floates
3	Moisture	263 non-null	float64
4	Ash	261 non-null	float64
4 5 6	s	276 non-null	float64
6	C	276 non-null	float64
7	C C N H CSN Contraction	276 non-null	float64
8	H	276 non-null	float64
9	CSN	273 non-null	float64
10	Contraction	276 non-null	int64
11	Expansion	276 non-null	int64
12	Max. Fluidity	276 non-null	int64
13	Vite	276 non-null	float64
14	MMR	276 non-null	float64
15	-0.5	251 non-null	float64
16	-3.15	251 non-null	float64
17	Contraction Expansion Max. Fluidity Vitš MMR -0.5 -3.15 TPH CC 11 Initial Moisture Primary Crusher	276 non-null	int64
18	Initial Moisture	273 non-null	object
19	Primary Crusher	276 non-null	int64
20	Running Time (Min) Direction Coal raised	276 non-null	int64
21	Direction	276 non-null	int64
22	Coal raised	269 non-null	float64
23	Secondary Crusher	276 non-null	int64
24	Running Time (Min).1	276 non-null	int64
25	Direction .1	275 non-null	float64
26	Direction .1 Coal raised.1	269 non-null	float64
27	Crushing Fineness	253 non-null	float64
dtyp	es: datetime64[ns](1),	float64(16), in	t64(9), object

Before Cleaning data set with outliers

df.info()

	eIndex: 230 entries, 0				
	columns (total 28 col			-	
	Column	Non	-Null Coun	t Dtype	
0	Date Type of Blend	230	non-null	datetim	e64[ns]
1	Type of Blend	230	non-null	object	
	VM			float64	
				float64	
				float64	
5				float64	
				float64	
	21	230	non-null	float64	
-	н	230	non-null	float64	
	CSN	230	non-null	float64 int64 int64	
10	Contraction	230	non-null	int64	
11	Expansion	230	non-null	int64	
12	Max. Fluidity	230	non-null	int64	
13	Vite	230	non-null	float64	
14	MMR	230	non-null	float64	
15	F1	230	non-null	float64	
16	F2	230	non-null	float64	
17	TPH CC 11	230	non-null	int64	
18	Initial Moisture	230	non-null	object	
19	PC	230	non-null	int64	
20	Running Time (Min)	230	non-null	int64	
	Directionl	230	non-null	int64	
22	Coal raised	230	non-null	int64 float64	
23	SC	230	non-null	int64	
24	Running Time (Min).1	230	non-null	int64	
25	Direction2	230	non-null	int64	
26	Direction2 Coal raised.1	230	non-null	float64	
	Crushing Fineness				
dtyp	es: datetime64[ns](1),	floa	at64(15),	int64(10),	object (2

AfterCleaning data set elimination of outliers

Utilization of commands on data set after cleaning the data set

TATA STEEL

df.info()

	columns (total 28 col Column		-Null Coun	t Dturne	
0					e64[ns]
1	Date Type of Blend	230	non-null	object	
2	VM	230	non-null	float64	
3				float64	
	Ash	230	non-null	float64	
5	s	230	non-null	float64	
6	c	230	non-null	float64	
7	N	230	non-null	float64	
8				float64	
9				float64	
10	Contraction	230	non-null	int64	
11	Expansion	230	non-null	int64	
12	Max. Fluidity	230	non-null	int64	
13	Vitt	230	non-null	float64 float64	
14	MMR	230	non-null	float64	
15	F1	230	non-null	float64	
16	F2	230	non-null	float64	
17	TPH CC 11	230	non-null	int64	
18	Initial Moisture	230	non-null	object	
19	PC	230	non-null	int64	
20	Running Time (Min)				
21	Directionl	230	non-null	int64	
	Coal raised	230	non-null	float64	
23	SC	230	non-null	11109	
24	Running Time (Min).1	230	non-null	int64	
25	Direction2 Coal raised.1	230	non-null	int64	
26	Coal raised.1				
	Crushing Fineness es: datetime64[ns](1),				

AfterCleaning data set elimination of outliers

Utilization of commands on data set after cleaning the data set

Refining Input Parameter

												Т
	VM	Moisture	Ash	\$	c	N	н	CSN	Contraction	Expansion	-	
count	261.000000	263.000000	261.000000	276.000000	276.000000	276.000000	276.000000	273.000000	276.000000	276.000000	-	27
mean	25.684138	11.762129	12.452559	0.548902	76.739947	1.623451	4.429758	5.780220	-29.510870	14.423913	-	40
std	0.678377	0.593167	0.747546	0.022896	0.604814	0.066076	0.026347	0.308061	2.788918	6.568078	-	
min	23.410000	10.340000	10.160000	0.521417	76.162371	1.554112	4.398615	5.000000	-35.000000	-7.000000	-	40
25%	25.220000	11.420000	11.910000	0.538944	76.205019	1.571369	4.405596	5.500000	-31.000000	11.000000	4	40
50%	25.730000	11.690000	12.480000	0.541374	76.284299	1.588312	4.428799	6.000000	-29.500000	14.000000	-	40
75%	26.160000	12.000000	12.920000	0.548653	77.381381	1.651836	4.442237	6.000000	-28.000000	18.000000		40
max	27.580000	15.040000	15.430000	0.593800	77.598464	1.770693	4.497451	6.000000	-23.000000	33.000000	10.10	4

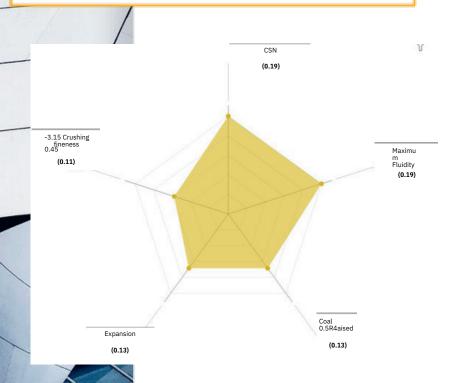
Before Cleaning data set with outliers

Refining Input Parameter

The outliers from each input parameter were removed

												TP
	VM	Moisture	Ash	\$	С	N	н	CSN	Contraction	Expansion		CC 11
count	230.000000	230.000000	230.000000	230.000000	230.000000	230.000000	230.000000	230.000000	230.000000	230.000000		230.0
mean	25.680957	11.755565	12.412904	0.549601	76.766029	1.627916	4.430272	5.778261	-29.543478	14.256522		400.0
std	0.665931	0.590590	0.700615	0.023492	0.608626	0.065862	0.026855	0.304201	2.866053	6.489449	-	0.0
min	23.410000	10.340000	10.160000	0.521417	76.162371	1.554112	4.398615	5.000000	-35.000000	-7.000000		400.0
25%	25.212500	11.410000	11.882500	0.538944	76.205019	1.571369	4.405596	5.500000	-31.000000	10.250000		400.0
50%	25.730000	11.670000	12.450000	0.541374	76.284299	1.588312	4.428799	6.000000	-29.500000	14.000000		400.0
75%	26.160000	11.987500	12.907500	0.548653	77.381381	1.665917	4.442237	6.000000	-28.000000	18.000000	-	400.0
max	27.580000	15.040000	13.940000	0.593800	77.598464	1.770693	4.497451	6.000000	-23.000000	33.000000		400.0

AfterCleaning data set elimination of outliers


3. ANALYZE

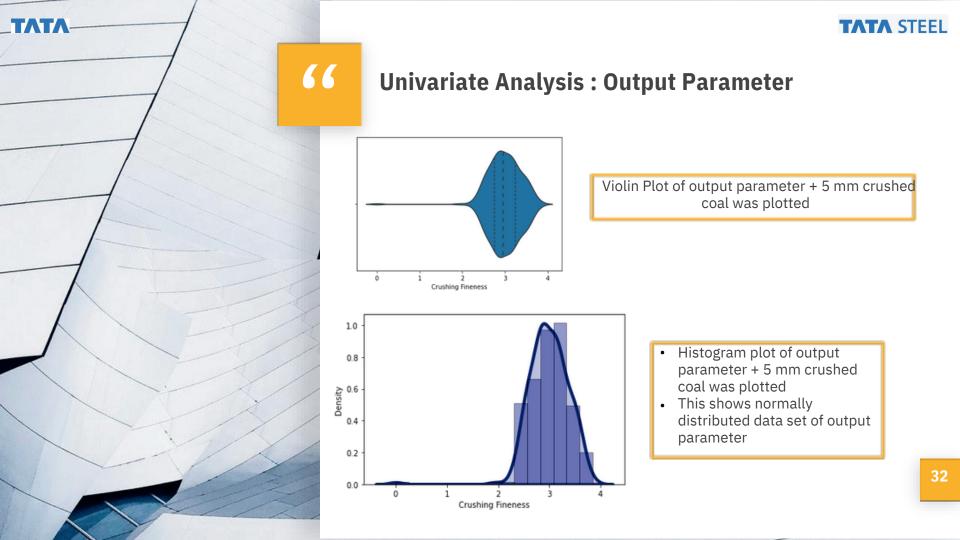
ΤΛΤΛ

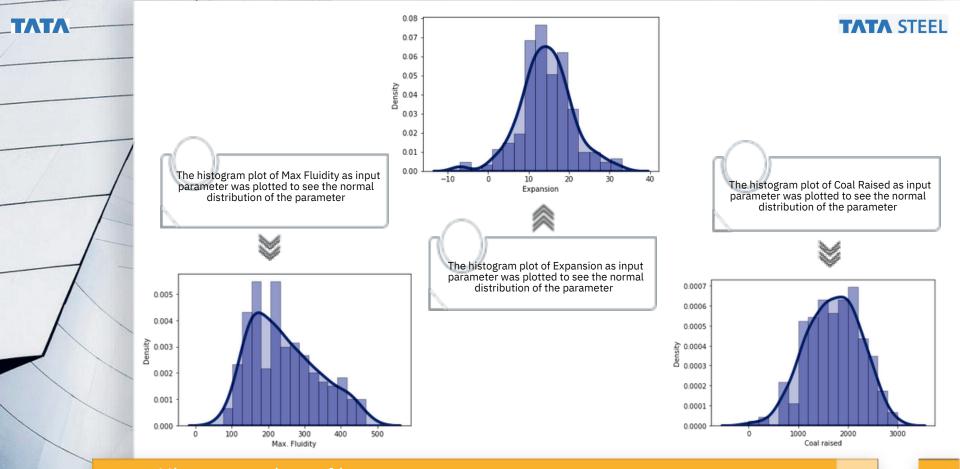
Preparation of Correlation Univariate Analysis Bivariate Analyses Matrix Multivariate Analysis

Correlation Matrix of independent variables wrt to Crushing Fineness

Filtering Features having correlation value greater than 0.05

Correlation Matrix of independent variables wrt to Crushing Fineness

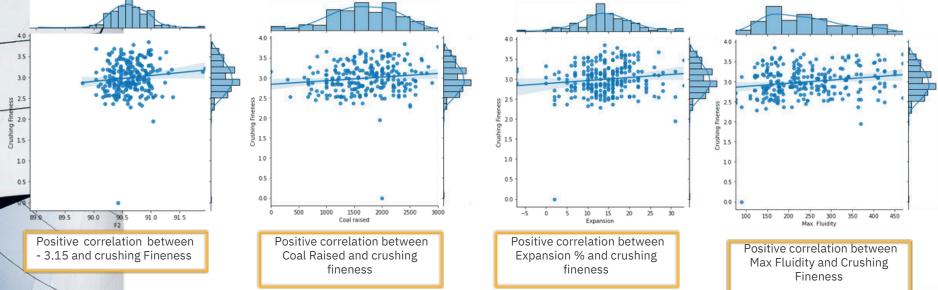

Correlation matrix between features



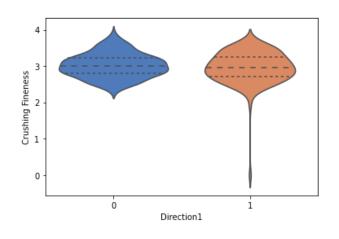
VM -		4 21	0.22	-0.13	0.45		0.47	0.39	0.17	8.37	0.08	4.55	0.08	0.024	0.062	0.093	415	0.0054	0.055	0.12	0.075	a a 21	0.055	0.071
Moisture -	431	÷.	4.22	4.11	0.37	0.27	0.053	4.09	40.006	63	0.012	0.26	0.046	-0.18	4 078	0.018	0.12	0.057	-0.15	0.0034	4.025	0.04	-0.15	0.085
Auto -	0.22	4.22	1	-0.34	4.02	0.54	-0.14	0.21	-0.16	8.39	0.54	44	0.0041	0.026	-0.078	0.062	-0.083	0.04	0.11	-0.05	6.008	4.11	0.11	0.091
5-	413	411	014	1	0.41	0.67	0.26	0.068	41	-0.13	-0.04	0.12	0.24	0.031	0.0077	4.054	4.12	-0.062	4.039	-0.094	0.014	0.018	4.039	0.069
c.	0.48	0.37	0.62	0.41	4	691	0.066	4.28	0.037	-0.43	0.041	0.58	0.16	0.068	0.02	0.098	0.14	-0.022	4 835	0.097	0.086	0.028	4 035	0.063
м.	44	0.27	0.54	1.67	0.93	1	0.042	0.16	0.023	0.42	0.043	0.4	0.2	0.053	40.017	0.12	0.063	4.013	0.07	0.08	0.049	0.0019	4.47	.0.035
н	0.47	0.05.3	0.14	4.26	0.066	0.042	1	0.35	0.17	0.26	0.28	0.41	0.2	0.0026	0.055	0.33	0.018	0.09	0.0044	0.29	-0.037	0.051	0.0044	0.034
CSN -	6.39	4.19	0.21	0.068	0.28	0.16	0.31	\mathbf{A}_{i}	6.076	8.45	0.35	0.34	0.51	0.007	0.00092	-0.12	0.23	011	0.069	0.034	0.02	0.014	4.049	0.19
Contraction -	0.17	4.006	0.16	41	-0.037	4.025	017	0.076	ΞĒ.	0.026	4.33	0.002	0.074	-0.036	0.015	4.085	-0.039	0.1	+0.11	0.11	-0.028	4 6 3 2	411	0.093
Expansion -	0.37	-4.5	0.39	413	4.45	4.42	0.26	0.45	0.026	х.	0.2	4.46	0.24	0.13	0.07	-0.08	4.19	0.87	4 823	0.096	-0.064	0.063	4.033	0.13
Max. Fluidity -	0.08	0.052	0.14	-0.04	0.045	0.043	0.28	0.35	433	0.2	1	4.27	0.19	6.023	0.012	0 072	014	0.13	0.12	4 11	0.029	0.057	0.12	0.19
wes -	4.55	0.16	.04	0.13	0.58	0.4	0.45	0.34	0.002	0.45	4.27	1.	0.0001	4.039	0.033	0.046	0.36	0.11	0.049	4.19	0.078	414	0.049	0.043
MMR -	0.06	0.000	0.0041	0.24	0.16	0.2	6.2	0.31	0.074	0.24	0.19	4 0081	1	01	8.015	4.015	0.18	4 0028	4 833	@.15	0 094	0.0018	4 033	0.097
-0.5	0.024	4.18	0.026	0.031	0.068	0 051	0.0026	0.007	0.004	0.13	0.023	4 039	0.1	1	0.69	0.061	0.0095	0.021	0.0027	0.055	0.042	0.027	0.0027	0.031
3.15	0.062	0.078	0.078	0.0017	6.02	4 517	4 515	0.00092	0.015	8.07	.0.012	0.013	0.015		4	0.089	0.018	0.046	0.0083	0.1	0.058	0.055	0 0083	0.11
Primary Crusher	4.093	0.018	0.062	0.054	0.098	0.12	0.21	0.12	0.085	0.08	0.072	0.066	0.095	0.063	0.009	4	0.038	0.099	0.0055	0.071	0.069	0.024	0.0055	0.1
Running Time (Min) -	4.15	0.12	4 (8)	-0.12	0.14	0.063	4 810	4 23	0.039	-0.19	-0.14	0.16	-0.18	4 0095	4.018	0.038	\mathcal{A}^{\dagger}	0.014	6.67	0.03	0.3	0.044	0.87	-0.021
Direction -	0 0058	6.057	224	4.042	-0.022	4.013	6.09	0.11	0.1	0.07	0.13	4 11	0.0128	0.021	0.046	4.099	0.014	1	0.048	0.055	0.079	0.32	4.048	0.078
Coal raised -	0.055	4 15	0.11	4 239	0.035	4.07	0.0044	0 069	-0 11	4 823	0.13	0.049	4.033	4 0021	4.0083	0.0055	0.67	0.048	1	.0 017	0.39	4 0079		0.13
Secondary Crusher	0.12	0 0034	0.05	4.094	0 097	0.08	0.19	-0.034	011	0.096	0.11	0.19	-0.15	0.055	01	0.071	0.03	8.055	0.017	1	0.0023	0.076	0.017	0.00
Running Time (Min) 1	a e 15	0.005	0.008	0.006	0.086	0.069	4 637	4.03	0.028	4 064	0.029	0.019	0.094	0.043	0.058	0.069	0.3	0.079	0.39	-0 0023	1	0.063	0.79	0.057
Direction 1 -	4 621	0.04	-0.11	4.018	6.028	0.0019	0.051	0.014	0.032	0.063	6.057	0.04	0.0018	0.027	0.055	4.024	0.044	0.32	0.0079	0.076	6.063	1	-0.0079	0.054
Coal raised 1	0.055	-0.15	0.11	4 8 3 9	0.035	0.07	0.0044	0.049	0.11	4 823	0.12	0.049	0.033	0 0027	4 0083	0.0053	0.87	0.048	4	0.017	0.39	0.0079		0.13
Crushing Fineness	0.071	-0.085	0.095	0.069	0.063	4.031	0.014	0.19	0.093	0.13	0.29	4.043	0.097	0.035	0.11	0.1	0.021	.0.078	0.13	0.08	6.057	0.014	0.13	я.
	. MV	Monture -	÷.	÷.	÷	'n	ż	5	Centraction -	Expansion -	Nax. Puddy -	w.	1000	45.	- 91.0-	Primary Cruther	neing Time (Min) .	Direction -	Coal raised	condary Cruther -	ing Time (Mu) 1 -	Deection .1 -	Cost revent 1 -	rushing Freeness -

31

-0.2

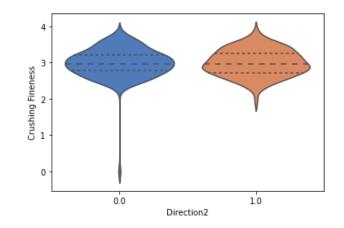

Histogram plots of input parameter

TATA

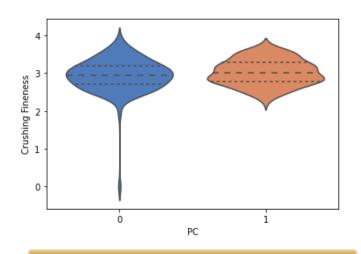

TATA STEEL

Bivariate Analysis : Blends Feature variation wrt output parameter (Blend, Crusher Features)

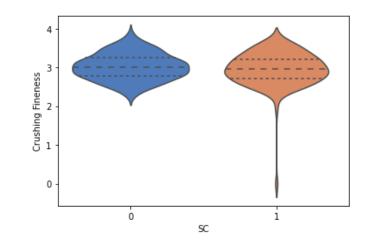
Properties coming from Correlation Matrix



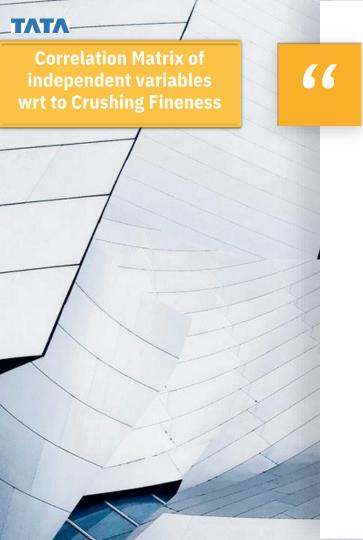
Scatter plot have been plotted between input parameters like -3.15, coal raised, Expansion percentage, Max Fluidity respectively with Crushing Fineness to evaluate variation


ТАТА

- Violin plot for crushing Fineness between direction 0 which is Forward and 1 which is Reverse. (For Primary Crusher House)
 When Crusher was running in forward direction
 - When Crusher was running in forward direction, comparatively more % of +5mm is generated No distinctive inference could be obtained


 Violin plot for crushing Fineness between direction 0 which is Forward and 1 which is Reverse. (For Secondary Crusher House)
 No distinctive inference could be obtained

Bivariate Analysis : Categorical Variable


ТАТА

- 1. Violin plot for crushing Fineness between Primary Crusher, 0 which is CCR 1 and 1 which is CCR 2. 2.
- When CCR 2 Crusher was running, comparatively more % of +5mm is generated No distinctive inference could be obtained
- 3.

- 1. Violin plot for crushing Fineness between Secondary Crusher, 0 which is CCR 4 and 1 which is CCR 5. 2.
 - When CCR 4 Crusher was running, comparatively more % of +5mm is generated No distinctive inference could be obtained
- 3.

Bivariate Analysis : Categorical Variable

- 1. The highlighted portion : Correlation value between input as well as output parameter.
- 2. Parameters like -3.15 coal crushed fraction, coal raised, Expansion percentage, Max Fluidity with Crushing Fineness have correlation value greater than 0.05 showing weak correlation between them.
- Input Parameters : (VM and C), (VM and Vit%), (Expansion and C), (Vit% and Expansion), (C and Ash), (N and Ash) are strongly correlated with each other

Correlation Matrix of independent variables wrt to Crushing Fineness

ΤΛΤΛ-

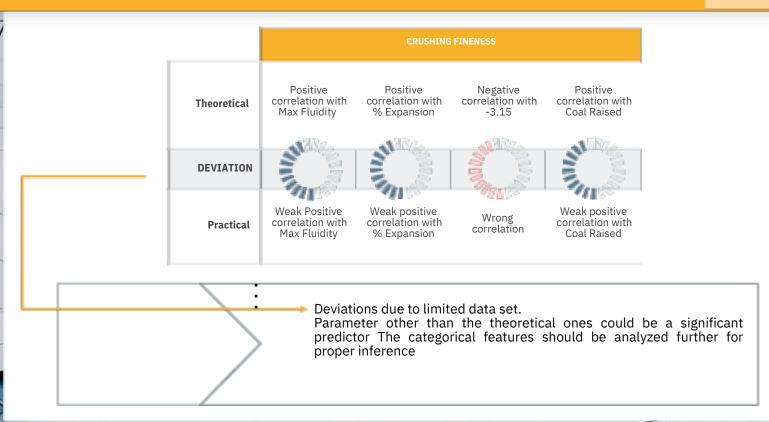
VH	de.	4.21	0.22	4.13	0.48	0.4	0.47	0.39	0.17	0.37	0.08	4.55	0.08	0.024	0.047	0.093	415	0.0054	0.055	0.12	0.075	0 021	0.055	0.071
Moisture -	431	ũ.	4 22	4.11	6.37	0.27	0.053	4.09	40.006	63	0.012	0.16	0.068	-0.18	.0.078	0.018	0.12	6.057	-0.15	0.0034	4.025	0.04	415	.0.085
Act. •	0.22	4.22	1	-0.14	0.62	0.54	-0.14	0.21	-0.16	8.39	0.54	44	0.0041	0.026	0.078	0.042	0.083	0.04	0.11	-0.05	6.008	4.11	0.11	0.091
s-	4.13	4.11	0 14		0.43	0.67	0.26	0.068	41	-0.13	-0.04	0.12	0.24	0.035	0.0077	4.054	4.12	-0 062	4.039	-0.094	8-014	4.018	-0.039	0.069
c	0.48	0.37	0.62	0.41	1	691	0.066	4.28	-0.037	-0.43	0.041	0.58	0.16	-0.068	0.02	0.010	0.14	-0.022	4 6 55	0.097	0.086	0.028	-0.035	-0.063
N -		0.27	054		0.93		0.042	-0.16	0.023	0.42	0.043	04	0.2	0.053	4.017	0.13	0.063	-0.013	0.07	0.08	2.049	0.0019	4.47	.0 035
н	0.47	0.05.3	0.14	0.26	0.066	0.042	4	0.31	0.17	0.26	0.28	0.41	0.2	0.0026	0.005	0.31	0.018	0.09	0.0044	0.19	-0.037	0.051	0.0044	0.034
CSN -	6.39	419	0.21	0.068	0.28	0.16	0.31	4	6.076	0.45	0.35	0.34	0.31	0.007	6-00093	4.12	0.23	0.11	0.069	0.034	-0.02	0.624	-0.069	0.19
Contraction -	0.17	-0.036	-0.16	-01	4.037	4.023	0.17	0.076	ιî.	0.026	4.33	0.002	0.074	-0.036	0.015	0.085	-0.039	0.1	-0.13	0.11	-0.028	4 6 3 2	4.11	0.093
Expansion -	6.37	-4.1	0.39	413	4.45	-0.42	0.26	0.45	0.036	4	02	0.46	0.24	0.13	0.07	-0.08	-6.19	0.87	4 023	0.094	-0.064	0.063	4.033	0.13
Max. Pluidity		0.052	0.14	-0.04	0.045	0.043	0.28	0.35	4.33	02	1	4.27		6.023				0.13	-0.13	-0.11	40.029	0.057	0.12	0.29
Web -	4.55	0.16	-0.4	0.12	.0.58	0.4	0.45	4.34	0.002		4.21		-0.0001						0.049				0.049	
MMR	0.08		0.0041			0.2		0.31				4 0081									0.094			
	0.024			0.031								0.039	01		0.69			0031			0.042			0.031
-3.15 -												0.013									0.058			011
Running Time (Min) -			4.083			0.063		4.23		-0.19		0.16		4 0015				0.034				0.014		-0.021
				4 942						6.07			-0.0028								0.079			0.078
Coal raised																					0.39			0.13
Secondary Crusher						0.06			011		0.11	0.19		0.055					1.1.1		0.0023			
Running Time (Min) 1	a e 15	0.005	0.008	0.006	0.086	0.069	4 837	4.43	-0.028	4 064	0.029	0.019	0.094	0.042	0.058	0.069	0.3	0.079	0.39	-0.0023		0.063	0.79	0.057
Direction 1	4 621	0.04	-0.11	4.018	6.028	0.0019	0.051	0014	-0.032	0.063	6.057	0.04	-0.0018	6.627	0.055	0.024	0.044	0.32	0.0079	0.876	0.043	1	4.0079	0.054
Coal raised 1	0.055	-0.15	0.11	4 6 7 9	0.035	0.07	0.0044	4.049	0 13	4 823	0.13	0.049	4.033	0 0027	4 0083	0.0055	0.87	-0.048	1	.0.017	0.39	0.0079	14	0.13
Crushing Fineness	0.071	-0.085	0.095	0.069	0.063	0.001	0.014	0.19	4.093	0.13	6.29	4.043	0.097	0.035	0.11	0.1	0.031	0.078	0.13	4.08	6.057	0.024	0.13	1
	. MV	Monthum -	N.	ż	÷	ż	ż	ŝ	Centraction -	Equation -	Hax. Fluidty -	w.	1000	45.	-918 -	Primary Cruther	Running Time (Min) .	Deettion .	Coal raised .	Secondary Cruther -	funcing Time (Mol 1 -	Direction .1 .	Coal naised 1.	Crushing Freeness -

TATA STEEL

-0.6

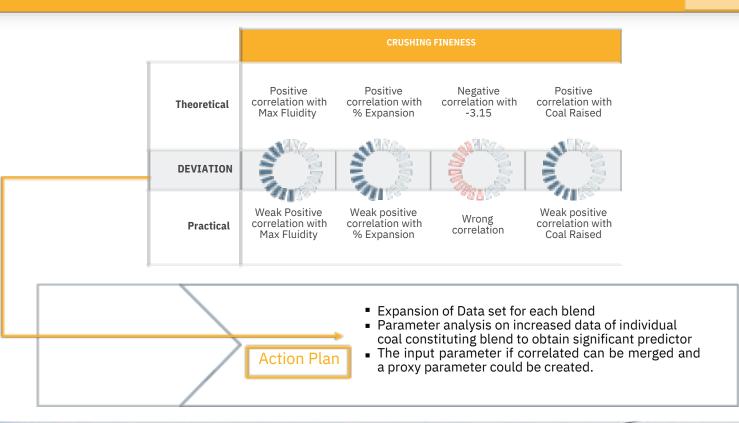
-04

- 0.2


-68

--0.2

-0.4



Conclusion

Conclusion

THANK YOU

TATA